
J. Fluid Me&. (1971), vol. 49, part 3, p p .  593-609 

Printed in Cheat Britain 
593 

Semidispersive wave systems 
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Department of Mathematics, University of California, Los Angeles 
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The statistical initial-value problem for a class of weakly coupled waves whose 
linear dispersion relation is o cc 5 lkl is examined. It is found that in two and 
higher dimensions a natural asymptotic closure is possible. The redistribution of 
energy is achieved by means of two mechanisms; the first by a resonance between 
collinear wave vectors; the second by a local transfer between adjacent rays. 
The entropy functional is I log n(k) dk and corresponds to particles obeying Bose- 
Einstein statistics. 

1. Introduction and general discussion 
The weak interaction problem in continuum physics ha,s received much 

interest in recent years and particular attention has been paid to weakly non- 
linear dispersive wave systems. The result of such investigations has usually been 
the derivation of a Boltzmann-like equation which, in the context of continuum 
mechanics, describes the redistribution of spectral energy (analogous to number 
density) amongst the various scales. Some authors (Elsasser & Graff, private com- 
munication) use the generating functional for the Fourier moments and describe 
its temporal evolution. In earlier work (for example, Litvak 1960, Hasselmann 
1962, Galeev & Karpman 1963), the usual procedure was to invoke some ad hoc 
statistical hypothesis in order to close the hiera.rchy of moment equations. It 
was later shown by Benney & Saffmaii (1966) that this hypothesis was, in fact, 
unnecessary. Thedecay of the zeroth-order (in the perturbation scheme) third and 
higher cumulants, due to the natural incoherence of dispersive waves, is sufficient 
to induce a natural asymptotic closure on the system. The reason for the closure 
is that the cumulant (or moment) evolution separates into two processes. The 
first process occurs on a time scale given by a characteristic wave period and 
involves a decoupling of initial correlations due to the dispersive nature of the 
waves and an approach to the Gaussian state as one might expect from the central 
limit theorem. The second process, occurring over longer time scales given by a 
characteristic wave period divided by powers of the measure of weak coupling, 
is one of regeneration of these higher cumulants by products of lower-order ones. 
These terms supply the energy transfer mechanisms which occur and it is their 
structure which enables us to close the system. Certain controversial questions 
raised by Hasselmann (1967) involving the consistency of the BenneySaffman 
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analysis have been answered by recent work of Newell (1968) and Benney & 
Newell (1969). 

Thus, achieving a natural closure is the result of the processes of forgetting 
and remembering being disjoint in the sense that they operate on different time 
scales. A necessary ingredient for this success is a sufficient degree of decoupling 
of initial correlations by the linear response of the system. It has long been 
thought that non-dispersive waves do not have this property due to the fact that, 
since all disturbances travel with the same speed, initial correlations are kept 
intact. This is true to some degree, but a finer definition of what is and what is not 
dispersive is required. Since the energy and momentum travel with the group 
velocity, one expects initial correlations to be preserved in systems where the 
group velocity is a constant vector. Examples of such waves are Alfvbn waves 
and one-dimensional, shallow-water and sound waves. But in two and higher 
dimensions, the familiar dispersion relation 

w cc k Ik( (1.1) 

(where k is the wave vector and w the frequency) is in some sense dispersive, as 
the group velocity although constant in magnitude depends on the wave direc- 
tion. Thus, while it is true that along a given ray in k space correlations are pre- 
served, the fact that many wave groups, carrying statistically independent in- 
formation, cross a given ray leads to an approach to the Gaussian state. The 
result is that the zeroth-order (in the perturbation scheme) higher cumulants 
decay with time. The central limit theorem is again operative and a natural 
closure can result. 

The direct similarity with dispersive systems ends at this point. The mecha- 
nism by which dispersive waves redistribute their energy is one of resonance; 
given a wave vector k, there is a non-trivial locus of wave vectors k,, such that 
& w(k) k w(k,) = o(k + kl). It turns out that in the present case the func- 
tional 

h = k w(k) k w(k1) k w(k+ k1) (1.2) 

has a double zero. This affects significantly the asymptotic behaviour of certain 
singular integmls of the form 

whose evaluation is required in obtaining the closure equations. It turns out that 
the asymptotic behaviour of the real part of the A function acts like a Dirac delta 
function which in the three-dimensional case can be evaluated as 6(h).  Thus, in 
a three-dimensional conservative system (where only the real part of A appears 
in the energy transport equation), the result derived in § 2 can be formally derived 
from the fully dispersive case. However, the similarity is only formal and justi- 
fication for its use can only be given aposteriori as the ordering scheme and closure 
equations depend upon the total asymptotic behaviour of the A function and the 
resulting long-time behaviour of all the cumulants. Both are significantly different 
in the present situation. In two dimensions, the structure of the long-time be- 
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haviour of the A function is very different and cannot be related at  all to the dis- 
persive case. The re-ordering of the perturbation series is more complicated but 
the energy transport equation exhibits the basic features of the three-dimensional 
case. In  both instances, we obtain an integro-differential equation in which the 
integrals are evaluated along certain resonant curves. Since the resonant curves 
of the present investigation are straight lines, those wave vectors k, collinear with 
k, the final equation takes a surprisingly simple form. 

This introduces a further striking contrast to the fully dispersive case. In  the 
latter, the associated H theorem indicates that the energy is primarily redis- 
tributed over all k space by the resonance mechanism, since the resonant loci 
intersect. In  the present case the resonance mechanism can only cause the energy 
to be shared along a given ray. Isotropic redistribution is achieved by a local 
transfer between neighbouring rays, and the transfer rate depends on the energy 
difference between adjacent members. This mechanism also takes longer to 
become operative. 

Due to the different character of these waves, we call them semidispersive. 
In  a sense, they take advantage of both their dispersive and non-dispersive 
character; the former promotes closure while the latter ensures the simplicity of 
the resonant loci. 

We remark on an interesting consequence of the theory as applied to the 
shallow-water equations. These equations are themselves a model describing the 
behaviour of waves whose wavelength is large compared to the depth. When the 
energy has reached those wavelengths at  which the shallow-water limit no longer 
applies, then further redistribution can only take place by the resonant mechan- 
ism associated with deep-water waves. However, this mechanism requires the 
mutual interaction of four waves and takes a much longer time to become opera- 
tive. This would suggest a certain piling up of energy at  certain scales. 

Due to the strength of the secular terms which arise, it  is reasonable to ask 
whether any energy exchange occurs when the physical situation is modelled by 
a description where the dependent variables, such as the surface elevation and 
velocity potential, themselves decay sufficiently rapidly at infinity to permit 
ordinary Fourier transforms. A naive perturbation expansion on the Fourier 
transform of the wave height produces non-uniformities which can be interpreted 
as an exchange of energy between various modes. 

2. Analysis 
The derivation of the hierarchy of cumulant equations has been carried out in 

many of the cited references (for example, Hasselmann 1962, Newel1 1968) and 
for the present work we will merely write down the equations. As a first step, 
however, we introduce the following notation and definitions. Let 

W(r1, t ) ,  (rl, r2, t ) ,  ..., W')(r1, r2, ..., rN-l, t )  

represent the cumulants (which are in (one-to-one) correspondence with the 
moments) which correspond to correlations between values of the stochastic vari- 
able estimated at the spatial positions x, x + rl, x + rz, . . ., x + rN-l. We stipulate 
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spatial homogeneity which means that the moments are functions only of the 
relative geometry and time t. We also remark that it is consistent with the 
equation hierarchy to take R(’)(t) to be zero for all time. It proves convenient to 
work with the Fourier transforms of the cumulants which are defined by the 
inverse transformation of 

R(9r1 ,  r2, . . . , rlv-l, t )  
m =I Q(Iv)(k, ,..., kiv -,, t)exp[ik,.r,+ ...+ ik,v-,.rN-l]dkl...dkN-l, (2.1) 

where Q ( N )  are ordinary functions of the wave-numbers at the initial time. 
To take advantage of the weakness of the non-linear coupling, we remove the 
linear response of the system by introducing : 

-m 

Q‘”(k1, ..., k,v-lrt) = C Q(”(kl,SI;k2,S2; ... ;k,,sA,) 
S, . . .8N 

xexp[i(s,w,+s,w,+ ... +s,o,)t], (2.2) 

where k, + ... + k,v = 0 and the linear frequency w(k,), an even function of k, 
is denoted by w,. The parameters s,, . . , , sN are sign parameters and the summation 
is over all combinations of plus and minus. In the system we are discussing this 
corresponds to the fact that a given wave k can propagate in two directions. In  
systems where there are more than two frequencies corresponding to a given 
wave vector, the summation must be extended to include all these frequencies. 
Since in many cases the parameters k5,s5 occur as a pair in the arguments of 
certain functions, we will denote this number pair by K ~ .  In  places where this 
notation is ambiguous we will write the full argument dependence. 

The first two numbers in the equations hierarchy for q(N) are 

xexp[iW,,,ot16~,,odkz,, k+k‘= 0 ;  (2.3) 

x exp [iW,,,,t] 6,,,odklm+ ZeP(0, O f ,  O’l) 

x C L ( k , s ;  -k‘,s,; -kN,~m)q(2) (k‘ ,~f ;  -k‘,~”p(”(k’’,~‘’; - k , s m )  
81 sm 

xexp[i(sIw(k’)+s,,~(kf’) - s w ) t ] ,  (2.4) 

where k + k’ + k” = 0 and P(0, O f ) ,  P(0, O f ,  0”) denote the cyclic permutation over 
(k, k ) ,  (s, s‘); (k, k’, k”), (8, s’, s n )  respectively. We have introduced the further 
notational contractions 

azm, 0 = 6(kz + km - k)  9 

Wzm,O = S ~ W ~ + S ~ O ) ~ - S W ,  ~1 = w(ki), 

dk,, = dk,d&, 
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where 6(x )  is the Dirac delta function. The coefficients L(K,  ul, K ~ )  depend on the 
particular physical situation; for sound waves (p is the adiabatic constant) 

icg 
(2.5) 4 SIWl +- s,w, +SlwlSmwm 

k.k, k.km sw 
L(K,Kl ,K, )  = - - 

It becomes clear that the nature of the exponent of the oscillation is crucial. 
We therefore divide the problem into three classes. The fist class is that of non- 
dispersive waves for which the group velocity is a constant vector. In  such cases 
the exponent of the oscillatory exponential can be exactly zero for all k. For 
example, examine the integrand of (2.3) after setting w = a.k, a constant. 
Only for a few select s (sign values) will we get oscillatory cancellation. In  the 
remaining terms the time scale can be changed to st which returns the hierarchy 
to one of strongly interacting character. All hopes of a natural closure are 
thus lost. 

The second class, the class of dispersive waves, have been dealt with in the 
literature ; see, for example, Benney & Newel1 (1969). The distinguishing feature 
of previous analyses has been that the contribution to the long-time behaviour 
of the various quantities arose from those curves in k space where the exponent 
of the oscillatory terms has a simple zero. This class includes a wide variety of 
wave phenomena; Rossby waves, deep-water gravity waves, plasma waves 
(see Hasselmann 1962, Kenyon 1967, Davidson 1969, Rebhan & Wimmel 
1969). 

The third class arises when the exponent of the oscillatory term has a multiple 
zero. A principal reason for the study of such a class is that waves whose linear 
dispersion relation is 

w a  k Ikl 

belong to this category. Included in this class are sound waves, shallow-water 
waves, electromagnetic waves in non-linear media, and certain types of plasma 
waves. For such cases the exponent h(k,; k) = sll k,l + s21 k - k, I - sI kl is such 
that both h(k,; k) and Vklh(k,, k) can be zero simultaneously with a suitable 
choice of sign parameters. It will turn out that the cumulant hierarchy for this 
class of waves also has a natural closure. The reason for this is the cancellation 
produced by different wave groups crossing a given direction. Thus, whereas it is 
true that there is coherence along a given ray, the directional dependence of the 
group velocity results in sufficient incoherence to induce a natural asymptotic 
closure on the system. 

Our approach is to apply the naive perturbation expansion 

q”) = qkv’ + ~ q ~ ” ’  + c2qkNN’ + . . . (N = 2,3, . . . ), (2.6) 

to the system. Our goal will be to choose the slow variation of q,jm in order to 
remove non-uniformities from the expansion (2.6). We should note that the 
long-time limit (t  + 00, eat fixed, some a > 0) cannot always be taken in Fourier 
space and in these cases we must ask that the corresponding expansions 
in physical space remain uniformly ordered. The first terms in the energy 



x exp [iw,,,,tI J,,,odk,+ 2P(O, -0 )  Z L(K, K,, K,) J i  
x {2P( - 0, I ,  m) C L( - k, - 8; - 4, 8,; - k,, s,):qd2’(k, sl; - k,, sp )  

xqd2’,(k7?z,s,; - k , s , )  A(spw,+s,w,+s4lexP [iW,,Otl 4m.0dklm, (2.9) 

SP SP 

where P( - 0 ,  I, m) represents the cyclic permutation - K -+ K~ -+ K, --f - K, and 
P(0, - 0)  is the permutation K 3 - K. 

The long-time behaviour of the integrals is characterized by the asymptotic 
behaviour of the integral 

(2.10) 

where h(k1;k) = sllkll +s2lk-k1l-slkla 

The major contribution to (2.10) arises when, in addition to 

V k l w , ;  k) = 0, (2.11) 

the sign parameters are chosen so that the function h(k,; k) itself is identically 
zero on this locus. Thus the behaviour of (2.10) is governed to a large extent by 
the second variation of h(k,; k) in the neighbourhood of the locus given by (2.11) 
and this depends on the dimension of the problem. We will first tackle the cam 
of three dimensions as the re-ordering of the expansion (2.6) and the interpretation 
of the non-uniformities is easier there. In this case, the integraI (2.10) reduces to 
an integral of the form 

(2.12) 

which, after using polar co-ordinates and setting p = r2 = x2 + y2, is equivalent to 

The real part of (2.13) 

(2.13) 
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and thus we may say that in the long-time limit 

ReA(p) - &~6(p)sgnt, (2.14) 

where 6(p) is the Dirac delta function. This is reminiscent of the fully dispersive 
case where the long-time behaviour of the system is governed by integrals of the 
type 

(2.15) 

However, since the integration path is [0, co], the terms analogous to the Cauchy 
principal value are not present. In fact, we may write 

cospt-1 t++ m 
dp, (a > 0) ---+ -ig(O)logt+ig(O)loga 

P 
e-ap 

dp (2.16) 

using the Riemann-Lebesgue lemma and simple integration techniques. Thus the 
imaginary part of A ( p )  acts like a Dirac delta function which is weakly unbounded 
in time plus an order one term which takes account of the values of g(p) over a 
finite range. That (2.12) indeed acts like log (tl for long time can also be verified by 
differentiating (2.12) with respect to t and evaluating the resultant integral in 
terms of Fresnel integrals. It can also be verified that for t -+ + 00, 

cospt - 1 ap - ig(0) logt - ig(0) loga + i s o  g(P) - g(0) e+apap, - i s o  --m d P )  
--m P 

(2.17) 
which, when added to (2.16), yields the familiar result 

(2.18) 

where P denotes the Cauchy principal value. In applying the limit t + co we 
find : 

(2.19) 

No t log t term appears in pJ2)(x) due to the reality of q ( 2 ) ( ~ )  and the fact that we 
are dealing with a conservative system. We choose the slow temporal variation 
of ,$)(K) in order to remove the strongest non-uniformities, namely the t growth 
in &](K). To be specific we define T, = e2t whence 

412’ - O(l0g t, l), 442’ - O(t, log t ,  1). 

a a  a 
at at aT, 
-+-+@-- 

and we find 
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We have chosen the k, axes so that the given k lies along the positive k,, axis. 
When k lies along the negative k,, axis we find the result by using the property 

q")(-k, --s; k,s) = q("(k,s;  - k ,  -s). 

The reason that the right-hand side of (2.20) decomposes into three integrals is 
that for different values of the sign of k,, - k the choice of the sign parameters is 
different. In  order to satisfy (2.11) and the condition that h(k,; k )  itself is zero 
we require that s,, s2 be chosen such that 

s1 sgri k,, = s2 sgn ( k  - k,,) = s. 

Thus fork,, > k > 0 we choose s1 = - s2 = s; f o r k  > k,, > 0 we choose s, = s2 = s; 
for k > 0 > k,, we choose -sl = s2 = s. Since the coefficients F(k,; k )  in (2.10) 
generally depend on s1,s2 and s we must decompose (2.10) into three separate 
integrations. The functions G(k,  k lz)  and H ( k ,  k,,) are 

G(k,  k,,) = k~")(k, , ,  S; - k,,, - S) q'2'(k - kl,, S; k,, - k ,  - S) 

-k,,q(2)(k,s; -k, - ~ ) q ' ~ ) ( k - k 1 , , ~ ;  k lz -k ,  -8) 

- ( k  - klZ)  q'2)(k, s ; - k ,  - S) q") (klx,  S; - k,, - S) (2.21) 
and 

H(k,k,,) = kq(z'(k,x, -8; -k,,,s)q'2)(k-11,,,s; k,,-k, -8) 

- k,, q(" ( k ,  s ; - k ,  - S) $2) ( k  - k,,, s ; k,, - 11, - S) 
-(Ic-k,,)q(2)(kls; - k ,  -s)q(2)(klx ,  --s; -klZ,s). (2.22) 

We can write (2.20) in a more convenient form by setting k,, = ak in the first 
integral, k,, = y k  in the second, k,, = - yk in the third and also noting that 

q@)(k,,,S; -k i z ,  -8) = q'2)(-k1T, -8; kl,,s). 

/ 3 - 1 = y  

It is readily shown that the transformation 

on the first integral yields the third and so we obtain 

- ( 1  - a) 4 ( k ,  8) q@k,  s)} da, (2.23) 

where for convenience we have written q@)(k,  s; - k, - s) as q ( k ,  s ) .  The energy 
density is proportional to 

Sm (q(2) (k ,  + 1)+q(2) (k ,  - 1 ) ) d k .  

The result shows that the rate of change of q(k, + 1 )  (or q(2) (k ,  - 1 ) )  can be ob- 
tained by a knowledge of q(k ' ,  + 1) for all k' collinear with the given k.  Thus the 
equation for the energy density is closed. 

- m  
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3. The long-time behaviour of the higher cumulants 
Before proceeding to the two-dimensional case, we wish to emphasize several 

crucial points. The asymptotic analysis used in obtaining (2.19) assumes that 
both qd3) and qd4) are smooth, or to be precise, absolutely integrable and continuous 
a t  least in the neighbourhood of the resonant surfaces. By assumption the cumu- 
lants are initially smooth; however, in order for the analysis to be consistent we 
must ensure that they remain smooth to zeroth order. This property depends on the 
nature of the strongest secular terms appearing in q f )  and qi4J(i = 1, 2, 3, ...), 
whichtermsdetermine theslow temporal behaviour of qd”, q$”. In  turn, to evaluate 
in a consistent manner the asymptotic behaviour of qL3), qi4) we must know the 
asymptotic behaviour of 4:”. At any closure stage one needs some information on 
the behaviour of all the cumulants. This has been done by Benney & Newell 
(1969) for the case of full dispersive systems; in the present case the terms which 
contribute are formally the same but their asymptotic behaviour differs because 
of the double resonance. It turns out that the choice of the temporal behaviour 
of qsN) must be made as follows 

N 

i=l  
aqJm/aTi = C F(ki,si), 

where 
- 

-k lc4 [ (p  - 1 )2 p q ( p k ,  s) d p  - /’ ( 1 - a)2 aq(ak, s )  da 
4 0 

F(k,s) = 

G(k, s) has a somewhat similar, but algebraically more complicated, form in 
which the integrals include non-resonant terms. 

We have pointed out that the zeroth-order cumulants remain smooth. This 
is not the case for the O(E) components. If we evaluate QI3) we find that in order to 
take the long-time limit we must evaluate the integrals from the point of view of 
physical space. I n  this context, &i3) has developed a generalized function be- 
haviour. I n  fact, we can write the long-time behaviour of the triple cumulant in 
physical space as 

~ ( r ,  r’, t)  - 2ESP P(O, o’, 0”) { L ( K ,  - K’, - K”) qdZ)(K’) q,j2)(K”)} 
--oo 

xexp [ik.r+ik’.r’] &sw+s’w’+s”w”)6(k+k’+k”)dkdk’dk”, 
(3.3) 
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where a is the sum of generalized functions one of which is weakly unbounded 
( rv log t ) .  The first non-vanishing contributions after long time to R(3), R(4) and in 
general R(N)are O(S),  0(e2 )  and O ( E ~ - ~ )  respectively. In  physical space, the domi- 
nant time behaviour of the various cumulants can be written 

R(2) ff 0(1 )+O(Elogt , s )+O(s~t ,€2 )+  ...) (3.4) 

(3.5) 

B(4) - O(l / t2 )+O(e / t )+O(e210g t )+  .... (3.6) 

~ ( 3 )  o( l i t )  + O(S log t ,  8) + o(~2 log t) + O(e3t log t, &, . . . ) , 

Removing the s2t non-uniformity in (3.4) we obtain equation (2.23); this choice 
also removes the s3tlogt and e3t non-uniformities which appear in RJ3). The 
remaining asymptotic expansions are uniformly valid for times 6% = O(1) or 
T2 2 O(1). Equation (2.23) has an associated H theorem which ensures that 

P(0,  O',  0") (L(K, - K', - lc") q p  (K', S2t) q p  (lc", €")I -+ 0, S2t --f (33 

and thus removes the non-uniformity appearing as log t in B3). Thus to O($)  
the system achieves joint Gaussian characteristics. The remaining non-miformi- 
ties of the log t variety are only non-uniformities on time scales transcendentally 
long compared with those of direct interest. Nevertheless, their existence suggests 
that $2) be expanded as qh2) + e log k 4i2) f sqi2' + . . . , 

I1 0 +I k1,(k1,-k)qJ3)(k1,f ,  -8; k-kl,f,s; -k, - s )dk , ,  , 
--m 

where f is the unit vector in the direction k and k is Ikl . Then 

eloge2@{2)+Eq+ O(ElogT,,s) as T2 = O(1). 

Long before such terms become important, another, physically more important, 
class of non-uniformities arise. Mathematically they occur as the first subdomi- 
nant terms in the asymptotic expansions of steepest-descent-type integrals; they 
contain derivatives of the energy densities in planes perpendicular to the resonant 
rays. Physically, they are responsible for a further smoothing of spectral energy 
ink space; the resonant interactions only serve to equidistribute the energy along 
individual rays. These effects become important on the l/e4 time scale. 

As a final comment we emphasize that the above results have been derived from 
a time t = 0 when the cumulants were smooth. Extreme care must be taken ifthe 
initial-value problem is to be done from some other time t, = 0(1/$). In  this 
situation, the evolution of the O ( S )  generalized function structure in &(a) (see 
expansion for R3)) must be taken into account. A similar problem, which gave 
rise to an irretraceability paradox, has been discussed and resolved in the case 
of fully dispersive systems and we refer the reader to the work of Benney & Newell 



Senzidispersive wave systems 603 

(1969). Briefly stated the situation is as follows: the initial problem from t = 0 
has secular terms arising from integrals containing the argument 

However, beginning from t,, the initial values for qi3) contain an O(E) cusp-like 
structure of the form (eihtl- 1)l ih and non-uniformities in ~ L ' ) ( K )  are produced by 
the term 

in addition to the term S:, &h(s;; - 1 
ds. 

Addition of these two terms yields 

The choice of the long-time-scale behaviour of a q ; ( ~ ,  T2)/8T, is then consistent 
with that choice made when beginning at t = 0. 

4. The two-dimensional case 
The two-dimensional case yields an energy transport equation essentially of 

the same type as (2.23). However, the choice of time scales becomes more subtle 
and the long-time behaviour of the singular integrals is significantly different. 
The behaviour of the system is again characterized by integrals of the form (2.10) 
except that now we consider the wave vectors as two dimensional. In  this case, 
the integral (2.10) reduces to an integral of the form 

A straightforward integration by parts yields that the dominant behaviour of the 
above integral for long times is 

which tends to 
2t(n/iPt)* f ( 0 )  + O(1), as t +- 00. 

Thus the real and imaginary parts of the A function act as Dirac delta functions. 
Due to the lower dimension the response of A(h) is stronger by a factor of t3. 
This means the re-ordering of the non-uniformities becomes rather subtle as 
apparent secularities arising in lower-order (in B )  terms are ignored in favour of 
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more dominant ones arising in highest-order (in E )  terms. To be specific, we will 
schematically write down the dominant behaviour of the various cumulants. 

A .  C .  Newell and P. J .  Aucoin 

Rc2) - O( 1)  + O(&, E )  + O(e2tQ, E2t+,  3) + . . . , (4.3) 

R(3) N O(l / t&)+O(s t&)+O(s2 t )+O(s2 t2 )+  ..., (4.4) 

R(4) N O ( l / t ) + O ( € ) +  ..., (4.5) 
RcN) - ( l/ti(N-z)) + . . . . (4.6) 

At first sight it would appear that it is necessary to remove the secular term 
EtB from R@), whose terms involve integrals whose integrands contain the zeroth- 
order approximation to the third-order cumulants denoted 4d3). However, from 
the point of view of maintaining a uniform expailsion in time, it is the s2tQ term 
which is the first to become secular. Thus even though the term appears at  higher 
order in E its effect is felt to order one in a time t - O( l/d) which is short compared 
with t - O(1/s2), the time scale on which the st+ secularity first becomes non- 
uniform. This is fortunate as regards the closure of the system since the e2tg 
term contains only products of energy densities. 

Nevertheless, it might yet be argued that in a sense the triple cumulant R(3) 
becomes disordered on a time scale t = O(l/e).  This is only true, however, if we 
expect that the behaviour of this cumulant is dominated by the first term. But 
we know this is not the case in either dispersive wave systems or in three-dimen- 
sional semidispersive waves where an order one (in the former, in the latter order 
log t )  contribution was allowed to exist in the 8 term, whereas the zeroth-order 
terms decayed a t  least as fast as l / t .  The crucial point to emphasize, therefore, is 
that the higher cumulants have two classes of terms; ones which vanish on the 
short-time scale and others which remain finite until later times. The t i  term in 
R(3) must only be considered secular compared to unity, namely for those times 
when ct* > 1. Moreover, the coefficient involved in this term is the integrand 
which appears in the e2tg terms in R(2). Therefore the coefficient (a product of 
energy densities) will be a function of the time scale s2tg and its behaviour (deter- 
mined by the solution to the energy transport equation) will play a decisive 
role in the boundedness or non-boundedness of R(3) on the t - O( 1/G) time scale. 
It turns out that due to the solution of the integro-differential energy transport 
equation, the spectrum relaxes to a state where the terms multiplying the 
sti term vanish and so Rc3) is indeed bounded for all time. If this were not 
the case, the re-ordering process a t  the later time would have to undergo slight 
modifications. These would be necessary in any event, as we shall see in the 
following paragraph. 

The relevant multiple-time-scale sequence to achieve a first closure is therefore 

t = t ,  T2 = $&%. 

With this choice, we must remark that 8 function of T, is only a slowly varying 
function of time for times s2t& < 1 or for T2 < l/e4 which is much longer than the 
time scale of the first closure T2 = O( I), (t = o( l/d)). Note that a secular growth 
of Eet could not be taken care of in this fashion. We also emphasize that at the 
time scale T2 = 0 ( 1 ) ,  the errors in the first- or zeroth-order approximations to 
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R(2) are O(e3). This suggests that the asymptotic sequence initially used to order 
the cumulants ( 1 , q  e2, . . . , etc.) is no longer relevant and a different sequence is 
required. This leads naturally to the notion of a matched asymptotic expansions 
approach and one could well use these ideas by viewing the whole problem from 
the point of view of physical space since, in this context, all the fast-time behaviour 
(oscillations) has been removed. Nonetheless, it  is more convenient to use the 
multiple scale approach as long as possible 

For brevity, we will omit the details of the asymptotic expansions and simply 
quote the results obtained by choosing dqo/dT2 in order to suppress the @t* non- 
uniformity. We obtain 

(4.7) 

Again we remind the reader that the choice (4.7) must be consistent with a uni- 
form ordering of all the moments and in particular we must again ensure the 
continued smoothness of the zeroth-order approximation of the higher cumulants. 
Similar remarks about the nature of the initial-value problem from time T2 = O( 1) 
apply as in the three-dimensional case. 

We close this section with a brief note about the case when the dependent 
variables permit ordinary Fourier transforms. The fact that we have double 
resonances means that a perturbation series on the Fourier transform of the 
dependent variable itself (say:u(x, t ) )  will become non-uniform in time and there- 
fore there is an energy transfer process associated with the continuous case. We 
will just treat the two-dimensional case and set 

where 
as(k, t )  = m;(k, T )  + ea8,(k, t ,  T)+ . .., T = 2et4 (4.8) 

a a 

u(x,t) = A(k,t)exp [ik.x]dk = Cas(k,t)exp[ik.x+iswt]dk. J J .  
We find that due to non-uniformities in a; we must choose 

The transfer equation (2.38) satisfies certain conservation properties, those of 
energy and momentum. We can show, in a manner similar to the analysis of 
95, that 

5 Jrn -01) a m  &k) dk 

is conserved by the transport equation. 
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5. Conservation of energy, momentum and an H theorem 
The energy transport equation derived in $0 2 and 4 can conveniently be written 

+/:da(a(l -a)k3)4@-l)k3(q(ak)q((1-a) k) 

where p is the dimension of the system, q(k) is written for qo(k, s) and T is the 
modified slow time scale. An equilibrium solution of (5.1), which also removes 
the regenerated third-order cumulant (that part which did not decay to zero 
on the fast time scale), is 

q(k) = constant. (5 .2 )  

This choice relaxes the system closer to a state of exact (in e) joint Gaussianity. 
The mode of energy redistribution is one of resonance but the interesting feature 
is that, to this time scale, no angular (in k space) transfer occurs; for example, the 
constant in (5.2) is in general a function of angle. Angular redistribution is 
achieved by a local transfer process which occurs on a longer time scale (l/@ 
in three dimensions; l/e8 in two) by terms which are similar to the second closure 
terms derived by Benney & Newell (1969). 

Conservation theorems for the transport equation (5.1) can readiIy be found by 
considering 

where k denotes Ikl. Using (5.1) we obtain, 

In the second integral we make the transformation 

= a/( l -a) ,  k = ( y + l ) l  
and obtain 

(5 .5 )  
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Writing the right-hand side as the sum of two equal terms and applying the 
transformation 

y = 1/p, k = pl (5.6) 

to the second, we obtain on renaming dummy integration variables 

x (Y(1 +Y)  k3)*-l)k34(k) d y k )  d ( Y  I- 1) k) dydk.  (5.7) 

The choice F = 1 yields the conservation of energy and momentum. The choice 
F = (q(k))-1 yields the result 

where v is some arbitrary renormalization. Thus, log [q(k)/v] is an increasing 
function. Unfortunately the integral diverges for most realizations of the spec- 
trum. Nevertheless, (5.8) is strongly suggestive; at  the initial time we expect that 
since the second correlation decays rapidly with distance most of the contribution 
to H ,  comes from the zero value of q(k )  at large k in which case HF = -a. 
The subsequent response of the system to a non-equilibrium state is toward a 
smoothing of the power spectrum and in particular a movement of energy to 
high k. This can be seen by simply examining the integrand of (5.1) and is also 
consistent with the H theorem. This was also verified by numerical experiment 
(Aucoin 1970). The process can first relax when the energy (and momentum) 
is equally divided between the cells in k space. This is equivalent to the Rayleigh- 
Jeans spectrum. 

Before verifying this latter statement, we remark tha t  the I log [q(k) /v]  dk 
spectrum has a universal character for wave systems; it is also the entropy 
functional for fully dispersive waves. It is of interest to show, at least formally, 
that the equilibrium solutions of such systems are relative maxima. Given the 
sequence of independent system constraints, 

(5.9) 

we ask for the form of q(k) for which the entropy functional is maximal subject to 
the constraints (5.9). We obtain that 

(5.10) 

where the hi are Lagrange multipliers whose values may be determined from the 
a$. As an example, we quote the case of a system of Rossby waves (which are fully 
dispersive and which have as independent constraints the constancy of energy 
jq(k) dk and mean squared vorticity /kzq(k)  dk). The H theorem then suggests 
that l /Al + Ask2 is the form of the energy spectrum. In the present case there is 
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only one constraint (energy and momentum are the same along a ray) and thus 
we expect the system to tend towards the equipartition solution 

(5.11) 

For a system with finite energy we might expect that in a finite time the energy 
redistributes itself evenly over a range of wave vectors; the behaviour at  high 
kisprobably described by a decaying tail. For instance, the solution q cc l / ~ k t @ + ~ )  
formally satisfies (5.1). Unfortunately, the integrals diverge; however, we note 
two facts which may have significance. The first is that the divergence is only 
logarithmic (there is some cancellation of singularities); the second is that the 
transfer for this spectrum is completely local. 

In  accordance with the wave particles analogy we may set 

(5.12) 

where n(k) is the number of wave groups between k and k + dk and w(k)  is the 
energy of each group. We find from (5.11) that 

n(k) cc l/@) (5.13) 

which is the RayleighJeans spectrum. We remark, in addition, that wave groups 
are analogous to particles obeying Bose-Einstein rather than Fermi-Dirac 
statistics. The former corresponds to the case when the number of particles 
greatly exceeds the number of available states. 

An irreversibility has entered the system. The generic equations usually have 
the property that if v(x, t ) ,  p(x,  t )  are solutions, then so is - v(x, - t ) ,  p(x ,  - t ) .  
(In this instance we are using the dependent variables of velocity and density 
corresponding to sound waves.) This is equivalent to saying that if qd2)(ic, t )  is a 
solution then so is qJ2)(ic, -t) .  This property is conserved about the initial time 
t = 0 where the cumulants are smooth; from (2.14) we note that if we go backward 
in time we must choose the negative sign. Once we have decided which side of the 
t = 0 starting point we are, the sign of (2.23) and (5.1) and consequently the direc- 
tion of the H theorem is specified. If we wish to begin at  some other point in time, 
say t ,  = + O( 1 / 8 ) ,  then the initial-value problem has extra terms and again we 
obtain the positive sign. The energy transport equation can be used going for- 
ward or backward in time for t > 0 as long as we do not recross the time boundary 
layer a t  t = 0,'although it is to be expected that due to the nature of the solution 
(the smoothing out of the power spectrum) the retracing of solutions becomes 
increasingly difficult. 

The irreversibility has been introduced by a limit process ( t  3 co, cYt fixed, 
y = 2,$)  and not by a probabilistic assumption. As has been noted, even an ini- 
tially Gaussian state introduces a generalized function structure on the higher 
cumulants. Nonetheless, we emphasize that the dynamically evolved non-smooth 
structure is the only non-smoothness we can handle and for which (5.1) is valid. 
The system is unstable to finite amplitude perturbations (order B )  of a cusp-like 
nature. Moreover, as the system relaxes closer to its equilibrium point, one 
might expect that the magnitude of generalized function perturbations (in 
Fourier space) required to interrupt the progress of the solution towards 



Semidispersive wave systems 609 

equilibrium becomes smaller. However, such perturbations are regarded as 
improbable (but not impossible) occurrences as they require an exact reversal 
of all the ensemble members. In  this sense, the H theorem is, for a given experi- 
ment, a statement regarding the most likely progress of the system. 
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